Development of Real Time Radar Visual Style Information System of Power System Integrated Health Index

September 22~25, 2013 IIT, Chicago, IL, USA

Jintaek Lim*, Jinhwan Jang*, Jaeseok Choi†, Hongseok Choi** and Mahmud Fotuhi-Firuzabad***

> *Gyeongsang National University, South Korea ** KPX, Seoul, Korea *** Sharif University of Technology, Tehran, Iran

- 1. Domains
- **2. Formulation of PSHI**
- **3. Conceptual Diagram of PSHI**
- 4. Case Study
- **5. Conclusions**

Introduction

- Currently, there are a variety of system operation-related works such as voltage and frequency control through EMS, transmission line and transformer overload factor monitoring, reserve prediction management and transient stability prediction during contingency.
- In addition to this, there is a need of dealing with timely system operations and preventing problems, by predicting system integrity in advance, but in many ways, the present system is depending on capabilities of a real time system operation manager. Therefore, a visible and objective operation support tool must be necessarily introduced to judge situations of power systems intuitively and rapidly, to monitor them efficiently and to support decision making.
- This paper is focused on theoretical foundation establishment of reliability index and algorithm for monitoring a integrated index, which is called as PSHI(Power System Health Index).

-3-

1. Domains 1.1 Wellbeing Analysis Domain

	New PSHI States	Adequate	Secure	Economics	Present States	
	Healthy Index:HI	0	0	0	Normal	
	Marginal Index: MI	0	Х	Х	Alert	
	Risk Index: RI	Х	Х	Х	Emergency Extreme Emergency	
in		Х	Х	Х		
	to elected, monitor					

aalv

1.2 PSHI Domain Definition

Based on KPX Expert Interview and Reliability Codes in Korea

Adequacy

	Action Itom		Domain			
	Action Item			Н	М	R
	Frequency			59.9≤FH≤60.1	60.1 <fmh≤60.2< td=""><td rowspan="2">The rest</td></fmh≤60.2<>	The rest
					59.8≤FML<59.9	
		765		745≤VH ₇₆₅ ≤785	785 <vmh<sub>765≤800</vmh<sub>	The rest
	Voltage				726≤VML ₇₆₅ <745	
		345		336≤VH ₃₄₅ ≤360	360 <vmh<sub>345≤362</vmh<sub>	The rest
					328≤VML ₃₄₅ <336	
		154	Heavy	156≤VH ₁₅₄ ≤164	164 <vmh<sub>154≤169</vmh<sub>	The rest
Adaguagy			load		139≤VML ₁₅₄ <156	
Auequacy			Load	153≤VH ₁₅₄ ≤161	161 <vmh<sub>154≤169</vmh<sub>	The rest
			regulation		139≤VML ₁₅₄ <153	
			Light load 152≤VH ₁₅₄ :	1522\/4 2160	160 <vmh<sub>154≤169</vmh<sub>	The rest
				1325VII ₁₅₄ 5100	139≤VML ₁₅₄ <152	
	Reserve	ORP		5000≤ORH<5100	2000≤ORM<5000	500≤ORP<2000
	Power	FRP		1500≤FRH<1600	1000≤FRM<1500	500≤FRM<1000
	Over	OVL		0.7≤OVH≤0.85	0.85 <ovm<1.0< td=""><td>1.0≤OVR≤1.25</td></ovm<1.0<>	1.0≤OVR≤1.25
	Load	OTF		0.7≤OTH≤0.9	0.9 <otm<1.25< td=""><td>1.25≤OTR≤1.5</td></otm<1.25<>	1.25≤OTR≤1.5
	for electricity intervation					PES

Security

Action Item			Domain				
			Н	М	R		
	765			800 <vmh<sub>765≤880</vmh<sub>	The rest		
		705	720≤VH ₇₆₅ ≤000	653.4≤VML ₇₆₅ <726			
		245		362≺VMH ₃₄₅ ≤398.2	The rest		
Voltage	545		526≤V∏ ₃₄₅ ≤502	295.2≤VML ₃₄₅ <328	The rest		
	154	Heavy load		169 <vmh<sub>154≤185.9 1251≤VML≤139</vmh<sub>	The rest		
		Load regulation	$139 \le VH_{154} \le 169$		The rest		
		Light load		123.13 VIVIL ₁₅₄ (135	The rest		
Overland	OVL		1.2≤OVH≤1.5	1.5 <ovm<1.8< td=""><td>1.8≤OVR≤2.1</td></ovm<1.8<>	1.8≤OVR≤2.1		
Over Load		OTF	1.2≤OTH≤1.5	1.5 <otm<1.8< td=""><td>1.8≤OTR≤2.1</td></otm<1.8<>	1.8≤OTR≤2.1		
Power flow constraint between areas			0.85≤RTLX1<0.9	0.9≤RTLX1<0.95	0.95≤RTLX1≤1.0		
SPS			SPS=0	0 <sps≤1< td=""><td>1<sps≤2< td=""></sps≤2<></td></sps≤1<>	1 <sps≤2< td=""></sps≤2<>		

2. Formulation of PSHI 2.1 Target items for PSHI

-7-

2.1.1 Frequency

> Health index of frequency (HI_F) in a time, *t* can be formulated measuring how close it is to the standard frequency based on the deviation of degree out of the standard and it is identical in the whole system. The formulation is as follows.

$$HI_F(t) = (F^* - ABS(\Delta F(t)) / F^*)$$

Where, $\Delta F(t) = F(t) - F^*$ $HI_F(t)$: Health index of frequency F^* : Standard frequency

2.1.2 Voltage (RTCA: Low Voltage)

> Health index of $voltage(HI_V)$ in random time, t can be formulated, by measuring how close it is to the standard voltage, based on the deviation of degree out of the standard in each bus and voltage level. Its formulation is as follows.

-9-

$$HI_{V}(t) = \min[(V^{*} - ABS(\Delta V_{i}(t))) \times 100 / V_{i}^{*}]$$

$$i \in \Omega_{V}$$

Where, $\Delta V_i(t) = V_i(t) - V_i^*$ Ω_V : A set of voltage monitoring buses $HI_V(t)$: Health index of voltage V_i^* : Standard voltage

2.1.3 Reserve power

> Operating reserve power(HI_{ORP}) is determined, based on how much it satisfies the present reliability criteria. In other words, it can be used as an index to measure how close it is to the standard operating reserve power. The following shows its formulation.

$$HI_{ORP}(t) = (ORP^* - \Delta ORP(t)) \times 100 / ORP^*$$

Where, *HI_{ORP}(t):* Health index of operating reserve power *ORP**: Operating reserve power fixed by the reliability criteria

 $\Delta ORP(t) = ORP^* - ORP'(t)$ $\Delta ORP(t) = \min \{ORP(t), ORP^*\}[MW]$

2.1.4 Overload (RTCA: Overload)

> Health index of overload factor(HI_{OVL}) can be formulated, by measuring the system overload factor which means how overloaded the system is during rated operation. The following shows its formulation.

 $HI_{OVL_{min}}(t) = \min \{HI_{OVL_{i}}(t)\} \quad i \in \Omega_{OVL}$ $HI_{OVL_{I}}(t) = (OVL_{base} \times 100)(OVL - \Delta OVL'(t))$ $= (OVL_{base} \times 100) / OVL'_{i}(t)$

Where, $\Delta OVL'_i(t) = OVL_{base} - OVL'_i(t)$ $\Delta OVL'_i(t) = \text{maximum} \{ OVL_i(t), OVL_{base} \} [pu]$ $HI_{OVLi}(t)$: Health index of *i* system in random time, *t* OVL_{base} : Overload factor of the minimum capacity considered to show 100% of health index [pu] $OVL_i(t)$: Overload factor of *i* system in random time, $t(=OL(t)/CAP_{rated})$ [pu] $OL_i(t)$: Actual capacity of *i* system in random time [MW] CAP_{rated} : Rated capacity of *i* system [MW] Ω_{OVL} : A set of system elements for overload monitoring

2.1.5 SPS

> Health index of SPS(Special Protection System) factor(HI_{SPS}) can be formulated. The following shows its formulation.

-12-

2.2 Function Models of PSHI

> Various kind of output function models of PSHI proposed newly in this paper

> Piecewise Linear Proportional

2.3 Mapping PSHI

The flow chart for mapping PSHI into domains

Equal interval adjustment concept of PSHI mapped into three domains

2.4 Average Value of PSHI

Arithmetic mean method

(1) Adequacy PSHI1

$$\begin{split} PSHI1 = (HI_{F} + HI_{V154} + HI_{V345} + HI_{V765} + HI_{ORP} \\ + HI_{FRP} + HI_{OVL} + HI_{OTF}) / 8 \end{split}$$

Geometric mean method

1 Adequacy PSHI1

 $PSHI1 = (HI_F \times HI_{V154} \times HI_{V345} \times HI_{V765} \times HI_{ORP}$ $\times HI_{FRP} \times HI_{OVL} \times HI_{OTF})^{\frac{1}{8}}$

② Security PSHI2

 $PSHI2 = (RHI_{V154} + RHI_{V345} + RHI_{V765} + RHI_{OVL} + RHI_{OTF} + RTLX1 + RTLX2 + RSPS) / 8$

3 Composite PSHI

PSHI = (PSHI1 + PSHI2)/2

② Security PSHI2

 $PSHI2 = (RHI_{V154} + RHI_{V345} + RHI_{V765} + RHI_{OVL} + RHI_{OTF} + RTLX1 + RTLX2 + RSPS)^{\frac{1}{8}}$

(3) Composite PSHI $PSHI = (PSHI1 \times PSHI2)^{\frac{1}{2}}$

3. Conceptual Diagram of PSHI

Power & Energy Soc

4. Case Study

Rader style Visualization

ver & Energy Society

5. Conclusions

- This paper aims to present a PSHI(power system health index) which is a new reliability index for easier real time power system health monitoring during a variety of system operation-related works like frequency and voltage control through EMS, transmission line and transformer overload factor monitoring, reserve prediction management and contingency planning.
- The paper classified three evaluation domains into health, margin and risk domains based on the reliability criteria and the results of interview with experts. The PSHIs suggested from virtual input data and results of sub-items classified from the viewpoint of supply adequacy and security were mapped on these domains.
- Additionally, it is considered that output function model should be applied to an actual system.
- Therefore, it is thought that the formulation of PSHI index proposed by this paper will establish a theoretical foundation of reliability index, help development of algorithm, and additionally, cope with changes of criteria and the demands of system operators very effectively through various verifications of actual input data values. In other words, PSHI index will make a contribution to a visible and objective operation support for intuitive and rapid situation judgment of power systems and efficient monitoring and decision making.

References

- [1] R. Billinton and G. Lian, "Composite Power System Health Analysis using a Security Constrained Adequacy Evaluation Procedure", IEEE, Vol.PS-9, No.2, pp.936-941, May 1994.
- [3] Hongsik Kim, Jaeseok Choi, ""A Study on Health Analysis of Power System" KIEE, Spring Meeting Conference, pp.45-48, May, 2000,
- [4] BNF Technology, "Pre-Alarm System and Health Index of Plant", Dec. 2008
- [5] NERC "Integrated Reliability Index Concepts" NERC Report, Integrated Reliability Index White Paper DRAFT, 2012.
- [6] "A Basic Framework For Generating System Operating Health Analysis", R. Billinton, M. Fotuhi-Firuzabad. IEEE Transactions on Power Systems, Vol. 9, No. 3, August 1994, pp. 1610-1617.
- [7] "Generating System Operating Health Analysis Considering Standby Units, Interruptible Load and Postponable Outages", R. Billinton, M. Fotuhi-Firuzabad. IEEE Transactions on Power Systems, Vol. 9, No. 3, August 1994, 1618-1625.
- [8] "Composite Power System Health Analysis Using A Security Constrained Adequacy Evaluation Procedure", R. Billinton, G. Lian. IEEE Transactions on Power Systems, Vol. 9, No. 2, May 1994, pp. 936-941.
- [9] "Operating Reserve Risk Assessment in Composite Power Systems", G. Lian, R. Billinton. IEEE Transactions on Power Systems, Vol. 9, No. 3, August 1994, pp. 1270-1276.
- [10] Saleh Abdulrahman Saleh Aboreshaid "Composite Power System Wellbeing Analysis" PhD Thesis, University of Saskatchewan, Saskatoon, SK, Canada, Fall, 1997.

Acknowledgment

This work was supported by the Korea National Research Foundation (K-NRF) grant funded by the Korea government (MEST) (No. #2012R1A2A2A01012803). Specially, the project name, "Project X" is supported by KPX. We would like appreciate with the KPX. And also, the CASEP3 of the MKE of Korea is acknowledged.

Q & A

-22-

